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A METRIC MINIMAL FLOW WHOSE 
ENVELOPING SEMIGROUP CONTAINS 

FINITELY MANY MINIMAL IDEALS IS PI 

BY 

SHMUEL GLASNER 

ABSTRACT 

We show that a minimal metric flow X whose enveloping semigroup E(X), 
contains finitely many minimal ideals, is a PI-flow; i.e. X has a proximal 
extension X '  which can be built by iterating proximal and isometric extensions 
(starting with the trivial one point flow). An example is given which shows that 
the converse theorem does not hold. Finally, we show that if X is a minimal, 
non-trivial, metric, weakly mixing flow and the group action is nilpotent then 
E(X) contains infinitely many minimal ideals. 

In this note we generalize a result which appears in [1]. This result ([1, Prop. 

8.8]) states that if X is a metric minimal flow whose proximal relation is an 

equivalence relation then X is a PI-flow. Now it is easy to see that for a minimal 

flow X, the condition "Proximal is an equivalence relation" is equivalent to the 

condition "E(X),  the enveloping semigroup of X, contains a unique minimal 

ideal". Our result is that a metric minimal flow X is PI whenever E ( X )  contains 

only finitely many minimal ideals. 

We shall use the machinery and technique developed in [2] and [l] to prove 

this result (Theorem 1 below). Also we shall use freely the notations and 

theorems introduced in [1]. However, in order to make at least the statements 

of Theorem 1 and 2 independent of other sources, we give the following 

definitions (see [3] for a general account). 

A f low is a triple which consists of a compact Hausdorff space X, a locally 

compact topological group T and a jointly continuous function (written 

(x, t ) ~ x t )  of X x T onto X which satisfies the conditions ( x t ) s  = x ( t s )  and 

xe  = x for all x E X and s, t  E T, where e is the identity element of T. We 

denote a flow by (X, T) or sometimes just X. 
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A flow is minimal if it contains no proper closed invariant non-empty 

subsets. A homomorphism (or extension) X -~  Y of a minimal flow X onto a 

minimal flow Y is a continuous map which satisfies c~(xt) = r for all x E X 

and t E T. 

A pair of points x,, x2 in a flow X is called proximal if there exists a net {t,} in 

T such that lim tix, = lim t~x2. The subset of X • X defined by 

P = P(X) = {(x,,x2): x~ and x2 are proximal} 

is called the proximal relation on X. A homomorphism X - ~  Y is called 

proximal if all pairs of points x,, x2 in X such that x,, x2 E 4)-'(Y), for some 

y E Y, are proximal. The homomorphism X--~ Y is called distal if whenever 

x,, x2~d , - ' ( y )  for some y ~  Y and x ~ x 2  then (x~,x2)~P. X - ~ Y  is an 

isometric extension ([4]) if there exists a real valued function p(x,, x2) defined 

for all pairs in the subset {~b-'(y) x ~b-'(y): y E Y} of X x X such that 

(a) p(x,,x2) is continuous on its domain, 

(b) for each y E Y, p restricted to (k-'(Y) x d,- '(y) is a metric on ~b-'(y), 

such that all the metric spaces ~b-'(y) (y ~ Y) are isometric, 

(c) p(x,t, x2t) = p(x,,x2) for all t E T and (x,,x2) in the domain of p. 

Clearly an isometric extension is distal. 

We say that a minimal flow is strictly PI if there exists an ordinal ~ and for 

each ordinal ot =< r/ a flow Xo such that 

(i) Xo is the trivial one point flow and X, is X, 

(ii) for each a < r/ there is a homomorphism Xa+, 6. . ,  = Xa which is either 

proximal or isometric, 

(iii) if a =< ~ is a limit ordinal then Xo is isomorphic to a minimal subset of 

the projective limit A C I/{X~ :/3 < or} which is defined by 

a = {(Xo, x , , . . . ,  x~, . . .  ): x, = 4,,+,(X,+l)}. 

X is a PI-ltow if there exists a proximal extension X'  of X which is strictly PI. 

Given a flow (X, T) we can consider T, whose action we assume to be 

effective, as a subset of the space X "  of all mappings of X into itself. The 

closure of this subset in X x is a semigroup of transformations of X into itself 

(usually far from being continuous or even measurable) which is called the 

enveloping semigroup of X and is denoted by E(X). The semigroup multiplica- 

tion by elements of T on the right makes E(X) a flow of the group T (as a 

discrete group). It is easy to see that the minimal right ideals of the semigroup 

E(X)  coincide with the minimal subsets of the flow (E(X), T). All these 
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minimal sets are isomorphic. Since only minimal right ideals are of interest we 
refer to them as min imal  ideals. 

A flow (X, T) is weakly mix ing if whenever A, B, C and D are non-empty 

open subsets of X then there exists t ~ T such that in X x X, (A x B ) t  N 

( C x D ) ~ .  

We can state now our first theorem. 

THEOREM 1. Le t  X be a min imal  f low where X is a metric  space. Suppose  

E ( X )  conta ins  finitely m a n y  min ima l  ideals;then X is a PI-flow. 

PROOF. We proceed by steps. 

(a) We let /3T be the Stone-(~ech compactification of the discrete group T, 

M a fixed minimal ideal in fiT, J the set of idempotents in M, u a fixed element 

of J and G = Mu. We choose Xo E X such that xoa = Xo and we let ~ be the 

subalgebra of ~(u)  which corresponds to the pointed flow (X, xo) (i.e. 

~t = {/(t) = F(xot):  F is a real valued continuous function on X}). 

We put 

A = 63(X, Xo) = ~ ( M )  = {or E G: XoOt = Xo} 

e I,, = u I , ,} .  

(b) B y  [/, 7.5 and 7.7.2] there  exists a metric minimal strictly PI-flow i,.. 

with a base point y| such that 

(1) the orbit closure of x| = (xo, y| X • Y| is a minimal flow, X| 

(2) the projection map X| -~, X is a proximal homomorphism, 

(3) A H ( F ,  ~') = F where 

F = I~ (Y . ,  y , )  = {a ~ G: y . a  = y . } ,  

(4) the projection X . ~  Y. is a RIC-extension (see [ l ,Sec.  5]). 

Notice that since 4' is proximal A = ~ ( X . ,  x.) = 61(X, xo). Also since X .  is an 

extension of Y| A _C F. Now since ~b is RIC, for each y E Y. 

~b-I(y) = x . F o p  where p E M is such that y .p  = y. 

Thus if we show that F = A then 

6 - ' ( Y  ) = x , A  o p = {x.} o p = x . p  

and 6 is one-to-one; i.e. X| is isomorphic to the strictly PI-flow Y| and it will 

follow then that X is PI. Thus all we have to show is that A = F. 

(c) The group F acts on M (on the left) and so induces a flow (F, M). F is a 
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subset of M and if P denotes the closure of F in M then P is an F-invariant  

closed subset of M. It is easy to see that there exists an idempotent  w E P such 

that w is an F-almost-periodic point (i.e. F w  is an F-minimal set). We fix such a 

w and we let 

K = {p  E F w :  x|  and x| are proximal}. 

By [1, Lemma 8.5] K is a residual subset of Fw.  (This is the deepest  part of the 

proof and is already proved in [2].) 

(d) Let  I , , .  �9 I, be the finite set of minimal ideals in E ( X ) .  Let  M,, .  �9 M, 

be n minimal ideals in /3T which are mapped onto I , , . . . ,  h respectively.  

Let  J, be the set of idempotents in M~; then it is well known that 

P ( x o )  = {x ~ X :  x is proximal to xo} 

= 0 xoJ~. 
i = l  

Define 

K , = { p E F w : x o p E X o J ~ }  i = i , 2 , . . - , n .  

We claim that K = U ~., Ki. Indeed if p E F w  then since F w  C_ F, y| = y| so 

that xop is proximal to xo implies that x| = (xo, y~)p = (xop,  y| is proximal to 

x~--(xo.y=). This shows that K~ C_ K. Conversely if p E K then x| = 

(xo, y~)p = (xop,  y~) is proximal to x~ = (Xo, y~) and hence xop is proximal to xo 

which implies that p belongs to some K,  

(e) Next  we show that if a E F \ A  then for each i, K~ N aK~ = ~ .  To see 

that we observe that if p and q are both in K~ and q = otp then there are 

v,, v2 E J~ such that xop = XoV, and xoq  = xov , .  This implies that xop and xoq are 

proximal (e.g. (xop )v ,  = (XoV,)V, = XoV, and also (Xoq)v ,  = (XoV2)V~ = XoVl, since 

v, and v2 are in the same minimal ideal). On the other hand if v E J is such that 

p v  = p then also q v  = a p v  = a p  = q and thus xop  and xoq  can be proximal 

only if they are equal. Therefore  xop = xoq  = x o a p  and ( x o a p ) p - l u  = x o a  = Xo 

i.e. a E A. This is a contradiction and we conclude that K~ O ' a K i  = 0 .  

(f) We now show that the cosets space F / A  is finite. If not then we can find 

elements a l , .  �9 ", a .  in F such that for every 1 _-'6 i =< k _-< n 

a k . . . m §  is not i n A .  

It now follows easily from (e) that 

L = K n a , ( K  N - . .  (K n o~2(K n tz ,K)) .-  .) 
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is empty.  On the other hand by (c) L is a residual subset of Fw, a contradiction. 

Thus F/A is finite and so is x~F. 

(g) Since ~b is RIC and since x . F  is finite 

~ - ' ( y , p )  = x~Fop = x~Fp 

for every  p ~ M and it follows that ~ is a distal homomorphism. Now K is 

dense in Fw and therefore x=K is dense in x=Fw. Since Fw C_ F, x~Fw C_ 4~-'(Y=) 

and x . K  _C4~-'(y=). By the distality of 4~, x| ={x| and it follows that 

x~Fw = {x~}, x~Fw = {x~} and multiplying on the right by u we have x~F = {x~}, 

i.e. F C_ A. Therefore  F = A and by (b) the proof is completed.  

We do not know whether  a metric minimal flow whose enveloping semigroup 

contains only a countable number of minimal ideals is necessarily PI. However  

the converse of this statement (and therefore  also the converse of Theorem I) 

does not hold, as one can see from the next example of a metric, two-steps, 

strictly PI-flow whose enveloping semigroup contains an uncountable number 

of minimal ideals. 

EXAMPLE. Let  T = SL2(R) be the group of 2 x 2 real matrices with determi- 

nant one. This group acts naturally on the space Y of all lines through the origin 

of R 2, as well as on the space X of all rays emanating from the origin of R 2. (We 

think of R 2 as the space of all ! • 2 real row vectors and the actions in question 

are those induced by the product  of a row vector  with a matrix.) The action of T 

on the compact  spaces X and Y is transitive hence also minimal. 

Now the map (X T ) ~  (Y, T)  which sends a ray onto the line which contains 

it is a homomorphism of flows and it is easy to see that this is an isometric 

homomorphism. Also it is easy to check that (Y, T) is a proximal flow (i.e. a 

proximal extension of the trivial flow). It thus follows that (X, T) is a two steps 

strictly PI-flow. 

Identifying X with the unit circle in R 2 one can show that the minimal ideals 

of E(X)  are in one-to-one correspondence  with the partitions of X into two 

complementary half closed arcs in the following way. If J and J '  are two such 

complementary half closed arcs then the elements of the corresponding 

minimal ideal I are in one-to-one correspondence with the points of X. If x E J 

then the corresponding element v~ E I maps all of J onto x and all of J '  onto its 

antipodal point (thus in this case v, is an idempotent). If x E J '  then the 

corresponding v, E I maps all of J onto x and all of J '  onto the antipodal point 

of x. 

We conclude that E ( X )  has 2 "~ different minimal ideals, 
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As an easy corollary of Theorem I we obtain the following theorem, which 
extends [6, Prop. 3.1]. 

THEOREM 2. Let T be a nilpotent group and let X be a non-trivial minimal 

weakly mixing flow. Then the enveloping semigroup of X contains infinitely 
many minimal ideals. 

PROOF. By Theorem I, X is a PI-flow if E(X)  contains only finitely many 

minimal ideals. Now every minimal flow of a nilpotent group is incontractible 

(i.e. a RIC-extension of the trivial flow; see [5]) and by [1, 8.10] this implies that 

if X is PI then X has a non-trivial equicontinuous homomorphic image. Finally, 

since a homomorphic image of a weakly mixing flow is weakly mixing it is clear 

that the only equicontinuous homomorphic image of a weakly mixing flow is 

the trivial one. This completes the proof. 

REFERENCES 

1. R. Ellis, S. Glasner, and L. Shapiro, PI-FIows, Advances in Math. (to appear). 
2. R. Ellis, The Veech structure theorem, Trans. Amer. Math. Soc. 186 (1973), 203--218. 
3. R. Ellis, Lectures on Topological Dynamics, W. A. Benjamin, New York, 1969. 
4. H. Furstenberg, The structure o[ distal flows, Amer. J. Math. 85 (1963), 477-515. 
5. S. Glasner, Compressibility properties in topological dynamics, Amer. J. Math. 97 (1975), 

148-171. 
6. H. B. Keynes and J. B. Roberton, Eigenvalue theorems in topological transformation 

groups, Trans. Amer. Math. So~:. 139 (1969), 359-369. 

DEPARTMENT OF MATHEMATICAL SCIENCES 
TEL AvIv UNIVERSITY, 

TEL+ AVIV, ISRAEL. 


